Pore loop-mutated rat KIR6.1 and KIR6.2 suppress KATP current in rat cardiomyocytes.
نویسندگان
چکیده
Cardiomyocytes express mRNA for all major subunits of ATP-sensitive potassium (K(ATP)) channels: KIR6.1, KIR6.2, SUR1A, SUR2A, and SUR2B. It has remained controversial as to whether KIR6.1 may associate with KIR6.2 to form the tetrameric pore of K(ATP) channels in cardiomyocytes. To explore this possibility, cultured rat cardiomyocytes were examined for an inhibition of K(ATP) current by overexpression of pore loop-mutated (inactive) KIR6.x. Bicistronic plasmids were constructed encoding loop-mutated (AFA or SFG for GFG) rat KIR6.x followed by EGFP. In ventricular myocytes, the overexpression of KIR6.1SFG-pIRES(2)-EGFP or KIR6.2AFA-pIRES(2)-EGFP DNA caused, after 72 h, a major decrease of K(ATP) current density of 85.8% and 82.7%, respectively (P < 0.01), relative to EGFP controls (59 +/- 9 pA/pF). In atrial myocytes, overexpression of these pore-mutated KIR6.x by 6.0-fold and 10.6-fold, as assessed by quantitative immunohistochemistry, caused a decrease of K(ATP) current density of 73.7% and 58.5%, respectively (P < 0.01). Expression of wild-type rat KIR6.2 increased the ventricular and atrial K(ATP) current density by 58.3% and 42.9%, respectively (P < 0.01), relative to corresponding EGFP controls, indicating a reserve of SUR to accommodate increased KIR6.x trafficking to the sarcolemma. The results favor the view that KIR6.1 may associate with KIR6.2 to form heterotetrameric pores of native K(ATP) channels in cardiomyocytes.
منابع مشابه
Phenylephrine preconditioning in embryonic heart H9c2 cells is mediated by up-regulation of SUR2B/Kir6.2: A first evidence for functional role of SUR2B in sarcolemmal KATP channels and cardioprotection
ATP-sensitive K(+) (KATP) channels were originally described in cardiomyocytes, where physiological levels of intracellular ATP keep them in a closed state. Structurally, these channels are composed of pore-forming inward rectifier, Kir6.1 or Kir6.2, and a regulatory, ATP-binding subunit, SUR1, SUR2A or SUR2B. SUR1 and Kir6.2 form pancreatic type of KATP channels, SUR2A and Kir6.2 form cardiac ...
متن کاملDiabetes induced by gain-of-function mutations in the Kir6.1 subunit of the KATP channel
Gain-of-function (GOF) mutations in the pore-forming (Kir6.2) and regulatory (SUR1) subunits of KATP channels have been identified as the most common cause of human neonatal diabetes mellitus. The critical effect of these mutations is confirmed in mice expressing Kir6.2-GOF mutations in pancreatic β cells. A second KATP channel pore-forming subunit, Kir6.1, was originally cloned from the pancre...
متن کاملMyocardial ischemia induces differential regulation of KATP channel gene expression in rat hearts.
The cardiac ATP-sensitive potassium (KATP) channel is thought to be a complex composed of an inward rectifier potassium channel (Kir6.1 and/or Kir6.2) subunit and the sulfonylurea receptor (SUR2). This channel is activated during myocardial ischemia and protects the heart from ischemic injury. We examined the transcriptional expression of these genes in rats with myocardial ischemia. 60 min of ...
متن کاملKATP channel subunits in rat dorsal root ganglia: alterations by painful axotomy
BACKGROUND ATP-sensitive potassium (KATP) channels in neurons mediate neuroprotection, they regulate membrane excitability, and they control neurotransmitter release. Because loss of DRG neuronal KATP currents is involved in the pathophysiology of pain after peripheral nerve injury, we characterized the distribution of the KATP channel subunits in rat DRG, and determined their alterations by pa...
متن کاملHypotension Due to Kir6.1 Gain‐of‐Function in Vascular Smooth Muscle
BACKGROUND KATP channels, assembled from pore-forming (Kir6.1 or Kir6.2) and regulatory (SUR1 or SUR2) subunits, link metabolism to excitability. Loss of Kir6.2 results in hypoglycemia and hyperinsulinemia, whereas loss of Kir6.1 causes Prinzmetal angina-like symptoms in mice. Conversely, overactivity of Kir6.2 induces neonatal diabetes in mice and humans, but consequences of Kir6.1 overactivit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 287 2 شماره
صفحات -
تاریخ انتشار 2004